Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(52): e2316466120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109526

RESUMO

DNA replication in all cells begins with the melting of base pairs at the duplex origin to allow access to single-stranded DNA templates which are replicated by DNA polymerases. In bacteria, origin DNA is presumed to be melted by accessory proteins that allow loading of two ring-shaped replicative helicases around single-strand DNA (ssDNA) for bidirectional unwinding and DNA replication. In eukaryotes, by contrast, two replicative CMG (Cdc45-Mcm2-7-GINS) helicases are initially loaded head to head around origin double-strand DNA (dsDNA), and there does not appear to be a separate origin unwinding factor. This led us to investigate whether head-to-head CMGs use their adenosine triphosphate (ATP)-driven motors to initiate duplex DNA unwinding at the origin. Here, we show that CMG tracks on one strand of the duplex while surrounding it, and this feature allows two head-to-head CMGs to unwind dsDNA by using their respective motors to pull on opposite strands of the duplex. We further show that while CMG is capable of limited duplex unwinding on its own, the extent of unwinding is greatly and rapidly stimulated by addition of the multifunctional CMG-binding protein Mcm10 that is critical for productive initiation of DNA replication in vivo. On the basis of these findings, we propose that Mcm10 is a processivity or positioning factor that helps translate the work performed by the dual CMG motors at the origin into productive unwinding that facilitates bidirectional DNA replication.


Assuntos
Proteínas de Manutenção de Minicromossomo , Proteínas de Saccharomyces cerevisiae , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Replicação do DNA , DNA/metabolismo , DNA de Cadeia Simples/genética
2.
Proc Natl Acad Sci U S A ; 119(49): e2216240119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36442086

RESUMO

Duplication of DNA genomes requires unwinding of the double-strand (ds) DNA so that each single strand (ss) can be copied by a DNA polymerase. The genomes of eukaryotic cells are unwound by two ring-shaped hexameric helicases that initially encircle dsDNA but transition to ssDNA for function as replicative helicases. How the duplex is initially unwound, and the role of the two helicases in this process, is poorly understood. We recently described an initiation mechanism for eukaryotes in which the two helicases are directed inward toward one another and shear the duplex open by pulling on opposite strands of the duplex while encircling dsDNA [L. D. Langston, M. E. O'Donnell, eLife 8, e46515 (2019)]. Two head-to-head T-Antigen helicases are long known to be loaded at the SV40 origin. We show here that T-Antigen tracks head (N-tier) first on ssDNA, opposite the direction proposed for decades. We also find that SV40 T-Antigen tracks directionally while encircling dsDNA and mainly tracks on one strand of the duplex in the same orientation as during ssDNA translocation. Further, two inward directed T-Antigen helicases on dsDNA are able to melt a 150-bp duplex. These findings explain the "rabbit ear" DNA loops observed at the SV40 origin by electron microscopy and reconfigure how the DNA loops emerge from the double hexamer relative to earlier models. Thus, the mechanism of DNA shearing by two opposing helicases is conserved in a eukaryotic viral helicase and may be widely used to initiate origin unwinding of dsDNA genomes.


Assuntos
Antígenos Virais de Tumores , DNA Helicases , Animais , Coelhos , Antígenos Virais de Tumores/genética , DNA de Cadeia Simples/genética , Replicação do DNA , Eucariotos
3.
Elife ; 82019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31282859

RESUMO

Twin CMG complexes are assembled head-to-head around duplex DNA at eukaryotic origins of replication. Mcm10 activates CMGs to form helicases that encircle single-strand (ss) DNA and initiate bidirectional forks. How the CMGs melt duplex DNA while encircling it is unknown. Here we show that S. cerevisiae CMG tracks with force while encircling double-stranded (ds) DNA and that in the presence of Mcm10 the CMG melts long blocks of dsDNA while it encircles dsDNA. We demonstrate that CMG tracks mainly on the 3'-5' strand during duplex translocation, predicting that head-to-head CMGs at an origin exert force on opposite strands. Accordingly, we show that CMGs that encircle double strand DNA in a head-to-head orientation melt the duplex in an Mcm10-dependent reaction.


Assuntos
Replicação do DNA/genética , DNA Fúngico/genética , DNA de Cadeia Simples/genética , Origem de Replicação/genética , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Fúngico/química , DNA Fúngico/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Proteínas de Manutenção de Minicromossomo/química , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Genéticos , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Elife ; 62017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28869037

RESUMO

Replicative helicases in all cell types are hexameric rings that unwind DNA by steric exclusion in which the helicase encircles the tracking strand only and excludes the other strand from the ring. This mode of translocation allows helicases to bypass blocks on the strand that is excluded from the central channel. Unlike other replicative helicases, eukaryotic CMG helicase partially encircles duplex DNA at a forked junction and is stopped by a block on the non-tracking (lagging) strand. This report demonstrates that Mcm10, an essential replication protein unique to eukaryotes, binds CMG and greatly stimulates its helicase activity in vitro. Most significantly, Mcm10 enables CMG and the replisome to bypass blocks on the non-tracking DNA strand. We demonstrate that bypass occurs without displacement of the blocks and therefore Mcm10 must isomerize the CMG-DNA complex to achieve the bypass function.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , Proteínas de Manutenção de Minicromossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Complexos Multienzimáticos/metabolismo
5.
Proc Natl Acad Sci U S A ; 113(26): E3639-48, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298353

RESUMO

Several important physiological transactions, including control of replicative life span (RLS), prevention of collision between replication and transcription, and cellular differentiation, require programmed replication fork arrest (PFA). However, a general mechanism of PFA has remained elusive. We previously showed that the Tof1-Csm3 fork protection complex is essential for PFA by antagonizing the Rrm3 helicase that displaces nonhistone protein barriers that impede fork progression. Here we show that mutations of Dbf4-dependent kinase (DDK) of Saccharomyces cerevisiae, but not other DNA replication factors, greatly reduced PFA at replication fork barriers in the spacer regions of the ribosomal DNA array. A key target of DDK is the mini chromosome maintenance (Mcm) 2-7 complex, which is known to require phosphorylation by DDK to form an active CMG [Cdc45 (cell division cycle gene 45), Mcm2-7, GINS (Go, Ichi, Ni, and San)] helicase. In vivo experiments showed that mutational inactivation of DDK caused release of Tof1 from the chromatin fractions. In vitro binding experiments confirmed that CMG and/or Mcm2-7 had to be phosphorylated for binding to phospho-Tof1-Csm3 but not to its dephosphorylated form. Suppressor mutations that bypass the requirement for Mcm2-7 phosphorylation by DDK restored PFA in the absence of the kinase. Retention of Tof1 in the chromatin fraction and PFA in vivo was promoted by the suppressor mcm5-bob1, which bypassed DDK requirement, indicating that under this condition a kinase other than DDK catalyzed the phosphorylation of Tof1. We propose that phosphorylation regulates the recruitment and retention of Tof1-Csm3 by the replisome and that this complex antagonizes the Rrm3 helicase, thereby promoting PFA, by preserving the integrity of the Fob1-Ter complex.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética
6.
Elife ; 4: e04988, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25871847

RESUMO

We have reconstituted a eukaryotic leading/lagging strand replisome comprising 31 distinct polypeptides. This study identifies a process unprecedented in bacterial replisomes. While bacteria and phage simply recruit polymerases to the fork, we find that suppression mechanisms are used to position the distinct eukaryotic polymerases on their respective strands. Hence, Pol ε is active with CMG on the leading strand, but it is unable to function on the lagging strand, even when Pol δ is not present. Conversely, Pol δ-PCNA is the only enzyme capable of extending Okazaki fragments in the presence of Pols ε and α. We have shown earlier that Pol δ-PCNA is suppressed on the leading strand with CMG (Georgescu et al., 2014). We propose that CMG, the 11-subunit helicase, is responsible for one or both of these suppression mechanisms that spatially control polymerase occupancy at the fork.


Assuntos
DNA Helicases/genética , Replicação do DNA , DNA Fúngico/genética , Subunidades Proteicas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Sequência de Bases , DNA/genética , DNA/metabolismo , DNA Helicases/química , DNA Helicases/metabolismo , DNA Polimerase I/genética , DNA Polimerase I/metabolismo , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , DNA Polimerase beta/genética , DNA Polimerase beta/metabolismo , DNA Fúngico/química , DNA Fúngico/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Proc Natl Acad Sci U S A ; 111(43): 15390-5, 2014 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-25313033

RESUMO

DNA replication in eukaryotes is asymmetric, with separate DNA polymerases (Pol) dedicated to bulk synthesis of the leading and lagging strands. Pol α/primase initiates primers on both strands that are extended by Pol ε on the leading strand and by Pol δ on the lagging strand. The CMG (Cdc45-MCM-GINS) helicase surrounds the leading strand and is proposed to recruit Pol ε for leading-strand synthesis, but to date a direct interaction between CMG and Pol ε has not been demonstrated. While purifying CMG helicase overexpressed in yeast, we detected a functional complex between CMG and native Pol ε. Using pure CMG and Pol ε, we reconstituted a stable 15-subunit CMG-Pol ε complex and showed that it is a functional polymerase-helicase on a model replication fork in vitro. On its own, the Pol2 catalytic subunit of Pol ε is inefficient in CMG-dependent replication, but addition of the Dpb2 protein subunit of Pol ε, known to bind the Psf1 protein subunit of CMG, allows stable synthesis with CMG. Dpb2 does not affect Pol δ function with CMG, and thus we propose that the connection between Dpb2 and CMG helps to stabilize Pol ε on the leading strand as part of a 15-subunit leading-strand holoenzyme we refer to as CMGE. Direct binding between Pol ε and CMG provides an explanation for specific targeting of Pol ε to the leading strand and provides clear mechanistic evidence for how strand asymmetry is maintained in eukaryotes.


Assuntos
DNA Polimerase II/metabolismo , Replicação do DNA , Holoenzimas/metabolismo , Subunidades Proteicas/metabolismo , Saccharomyces cerevisiae/enzimologia , Cromatografia em Gel , DNA Helicases/isolamento & purificação , DNA Helicases/metabolismo , DNA Circular/metabolismo , Modelos Biológicos , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Fatores de Tempo
9.
Nature ; 484(7392): 125-9, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22425997

RESUMO

The conversion of chemical energy into mechanical force by AAA+ (ATPases associated with diverse cellular activities) ATPases is integral to cellular processes, including DNA replication, protein unfolding, cargo transport and membrane fusion. The AAA+ ATPase motor cytoplasmic dynein regulates ciliary trafficking, mitotic spindle formation and organelle transport, and dissecting its precise functions has been challenging because of its rapid timescale of action and the lack of cell-permeable, chemical modulators. Here we describe the discovery of ciliobrevins, the first specific small-molecule antagonists of cytoplasmic dynein. Ciliobrevins perturb protein trafficking within the primary cilium, leading to their malformation and Hedgehog signalling blockade. Ciliobrevins also prevent spindle pole focusing, kinetochore-microtubule attachment, melanosome aggregation and peroxisome motility in cultured cells. We further demonstrate the ability of ciliobrevins to block dynein-dependent microtubule gliding and ATPase activity in vitro. Ciliobrevins therefore will be useful reagents for studying cellular processes that require this microtubule motor and may guide the development of additional AAA+ ATPase superfamily inhibitors.


Assuntos
Citoplasma/enzimologia , Dineínas do Citoplasma/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Quinazolinonas/química , Quinazolinonas/farmacologia , Animais , Bovinos , Cílios/efeitos dos fármacos , Cílios/metabolismo , Cílios/patologia , Dineínas do Citoplasma/metabolismo , Proteínas Hedgehog/metabolismo , Cinetocoros/efeitos dos fármacos , Cinetocoros/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Melanossomas/efeitos dos fármacos , Melanossomas/metabolismo , Camundongos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Peso Molecular , Movimento/efeitos dos fármacos , Células NIH 3T3 , Peroxissomos/efeitos dos fármacos , Peroxissomos/fisiologia , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fuso Acromático/efeitos dos fármacos , Fuso Acromático/metabolismo , Fuso Acromático/patologia
10.
Nucleic Acids Res ; 39(17): 7499-511, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21693561

RESUMO

Gamma-glutamylcysteine synthetase encoded by GSH1 is the rate-limiting enzyme in the biosynthesis of glutathione and trypanothione in Leishmania. Attempts to generate GSH1 null mutants by gene disruption failed in Leishmania infantum. Removal of even a single allele invariably led to the generation of an extra copy of GSH1, maintaining two intact wild-type alleles. In the second and even third round of inactivation, the markers integrated at the homologous locus but always preserved two intact copies of GSH1. We probed into the mechanism of GSH1 duplication. GSH1 is subtelomeric on chromosome 18 and Southern blot analysis indicated that a 10-kb fragment flanked by 466-bp direct repeated sequences was duplicated in tandem on the same chromosomal allele each time GSH1 was targeted. Polymerase chain reaction analysis and sequencing confirmed the generation of novel junctions created at the level of the 466-bp repeats consequent to locus duplication. In loss of heterozygosity attempts, the same repeated sequences were utilized for generating extrachromosomal circular amplicons. Our results are consistent with break-induced replication as a mechanism for the generation of this regional polyploidy to compensate for the inactivation of an essential gene. This chromosomal repeat expansion through repeated sequences could be implicated in locus duplication in Leishmania.


Assuntos
Expansão das Repetições de DNA , Duplicação Gênica , Genes de Protozoários , Glutamato-Cisteína Ligase/genética , Leishmania infantum/genética , Genes Essenciais , Poliploidia , Sequências Repetitivas de Ácido Nucleico
11.
Cell Cycle ; 8(17): 2686-91, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19652539

RESUMO

Replisomes were originally thought to be multi-protein machines with a stabile and defined structure during replication. Discovery that replisomes repeatedly discard sliding clamps and assemble a new clamp to start each Okazaki fragment provided the first hint that the replisome structure changes during replication. Recent studies reveal that the replisome is more dynamic than ever thought possible. Replisomes can utilize many different polymerases; the helicase is regulated to travel at widely different speeds; leading and lagging strands need not always act in a coupled fashion with DNA loops; and the replication fork does not always exhibit semi-discontinuous replication. We review some of these findings here and discuss their implications for cell physiology as well as enzyme mechanism.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/metabolismo , Reparo do DNA , DnaB Helicases/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Biológicos
12.
Proc Natl Acad Sci U S A ; 106(15): 6031-8, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19279203

RESUMO

All cells contain specialized translesion DNA polymerases that replicate past sites of DNA damage. We find that Escherichia coli translesion DNA polymerase II (Pol II) and polymerase IV (Pol IV) function with DnaB helicase and regulate its rate of unwinding, slowing it to as little as 1 bp/s. Furthermore, Pol II and Pol IV freely exchange with the polymerase III (Pol III) replicase on the beta-clamp and function with DnaB helicase to form alternative replisomes, even before Pol III stalls at a lesion. DNA damage-induced levels of Pol II and Pol IV dominate the clamp, slowing the helicase and stably maintaining the architecture of the replication machinery while keeping the fork moving. We propose that these dynamic actions provide additional time for normal excision repair of lesions before the replication fork reaches them and also enable the appropriate translesion polymerase to sample each lesion as it is encountered.


Assuntos
DNA Helicases/metabolismo , Replicação do DNA , DNA Bacteriano/biossíntese , DNA Polimerase Dirigida por DNA/metabolismo , Cromossomos Bacterianos/genética , Dano ao DNA/genética , DNA Helicases/genética , Replicação do DNA/genética , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA Polimerase Dirigida por DNA/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Fatores de Tempo
13.
J Biol Chem ; 283(43): 29522-31, 2008 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-18635534

RESUMO

In most cells, 100-1000 Okazaki fragments are produced for each replicative DNA polymerase present in the cell. For fast-growing cells, this necessitates rapid recycling of DNA polymerase on the lagging strand. Bacteria produce long Okazaki fragments (1-2 kb) and utilize a highly processive DNA polymerase III (pol III), which is held to DNA by a circular sliding clamp. In contrast, Okazaki fragments in eukaryotes are quite short, 100-250 bp, and thus the eukaryotic lagging strand polymerase does not require a high degree of processivity. The lagging strand polymerase in eukaryotes, polymerase delta (pol delta), functions with the proliferating cell nuclear antigen (PCNA) sliding clamp. In this report, Saccharomyces cerevisiae pol delta is examined on model substrates to gain insight into the mechanism of lagging strand replication in eukaryotes. Surprisingly, we find pol delta is highly processive with PCNA, over at least 5 kb, on Replication Protein A (RPA)-coated primed single strand DNA. The high processivity of pol delta observed in this report contrasts with its role in synthesis of short lagging strand fragments, which require it to rapidly dissociate from DNA at the end of each Okazaki fragment. We find that this dilemma is solved by a "collision release" process in which pol delta ejects from PCNA upon extending a DNA template to completion and running into the downstream duplex. The released pol delta transfers to a new primed site, provided the new site contains a PCNA clamp. Additional results indicate that the collision release mechanism is intrinsic to the pol3/pol31 subunits of the pol delta heterotrimer.


Assuntos
DNA Polimerase III/fisiologia , DNA/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sítios de Ligação , Proliferação de Células , Replicação do DNA , DNA Circular/metabolismo , Proteínas Fúngicas/metabolismo , Glutationa Transferase/metabolismo , Modelos Biológicos , Modelos Genéticos , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais
14.
Mol Cell ; 23(2): 155-60, 2006 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-16857582

RESUMO

As the replication fork progresses, synthesis of the discontinuous lagging strand requires frequent priming and cycling of the lagging strand polymerase to the new primers. It appears that this mechanism also permits bypass of template lesions on both strands, leaving the damage behind in a single-strand gap and precluding fork stalling or collapse.


Assuntos
Replicação do DNA , DNA Polimerase Dirigida por DNA/química , DNA Polimerase Dirigida por DNA/fisiologia , Escherichia coli/genética , Escherichia coli/metabolismo , Células Eucarióticas/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/fisiologia
15.
EMBO J ; 24(12): 2214-23, 2005 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15920474

RESUMO

Targeted gene replacement (TGR) in yeast and mammalian cells is initiated by the two free ends of the linear targeting molecule, which invade their respective homologous sequences in the chromosome, leading to replacement of the targeted locus with a selectable gene from the targeting DNA. To study the postinvasion steps in recombination, we examined the effects of DNA structure-specific proteins on TGR frequency and heteroduplex DNA formation. In strains deleted of RAD1, MSH2, or MSH3, we find that the frequency of TGR is reduced and the mechanism of TGR is altered while the reverse is true for deletion of SGS1, suggesting that Rad1 and Msh2:Msh3 facilitate TGR while Sgs1 opposes it. The altered mechanism of TGR in the absence of Msh2:Msh3 and Rad1 reveals a separate role for these proteins in suppressing an alternate gene replacement pathway in which incorporation of both homology regions from a single strand of targeting DNA into heteroduplex with the targeted locus creates a mismatch between the selectable gene on the targeting DNA and the targeted gene in the chromosome.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA , Endonucleases , Proteínas Fúngicas , Marcação de Genes , Proteínas de Saccharomyces cerevisiae , DNA/metabolismo , Enzimas Reparadoras do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Proteínas Fúngicas/metabolismo , Marcadores Genéticos , Proteína 2 Homóloga a MutS , Proteína 3 Homóloga a MutS , Mutação Puntual , RecQ Helicases , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Proc Natl Acad Sci U S A ; 101(43): 15392-7, 2004 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-15489271

RESUMO

To study the mechanism of gene targeting, we examined heteroduplex DNA (hDNA) formation during targeting of two separate chromosomal locations in Saccharomyces cerevisiae. We examined both replacement of the entire gene with a heterologous selectable marker and correction of a single base pair insertion mutation by gene targeting, and in all cases our results were consistent with separate strand invasion/resolution at the two ends of the targeting fragment as the dominant mechanism in wild-type cells. A small subset of transformants was consistent with assimilation of a single strand of targeting DNA encompassing both flanking homology regions and the marker into hDNA. hDNA formation during correction of a point mutation by targeted integration was conspicuously altered in a mismatch repair-deficient background and was consistent with single-strand invasion/assimilation without mismatch correction, confirming that gene targeting by this pathway is actively impeded in wild-type yeast. Finally, inversion of one targeted locus and mutation of an active origin of DNA replication at the other locus affected hDNA formation significantly, suggesting that formation of productive interactions between the targeting DNA and the targeted site in the chromosome is sensitive to local DNA dynamics.


Assuntos
Marcação de Genes , Saccharomyces cerevisiae/genética , Proteínas de Transporte/fisiologia , Mapeamento Cromossômico , Cromossomos Fúngicos , Proteínas MutL , Ácidos Nucleicos Heteroduplexes/genética , Plasmídeos , Proteínas de Saccharomyces cerevisiae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...